Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38400335

RESUMO

Electrical energy is often wasted through human negligence when people do not switch off electrical appliances such as lighting after leaving a place. Such a scenario often happens in a classroom when the last person leaves the class and forgets to switch off the electrical appliances. Such wastage may not be able to be afforded by schools that are limited financially. Therefore, this research proposed a simple and cost-effective system that can analyze whether there is or is not a human presence in the classroom by applying a counter to count the total number of people entering and leaving the classroom based on the sensing signals of a set of dual PIR sensors only and then correlating this to automatically turn on or off the electrical appliances mentioned. The total number of people identified in the classroom is also displayed on an LCD screen. A TRIZ approach is used to support the ideation of the system. The system can switch on several electrical output loads simultaneously when the presence of people is detected and switch them off when there are no people in the classroom. The proposed system can be expanded to be used in homes, offices, and buildings to prevent the high cost of electricity consumption caused by the negligence of people. This enables smarter control of electricity consumption.


Assuntos
Iluminação , Instituições Acadêmicas , Humanos , Eletricidade
2.
PLoS One ; 14(12): e0227153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31881078

RESUMO

It is well proven that electrical energy can be harvested from the living plants which can be used as a potential renewable energy source for powering wireless devices in remote areas where replacing or recharging the battery is a difficult task. Therefore, harvesting electrical energy from living plants in remote areas such as in farms or forest areas can be an ideal source of energy as these areas are rich with living plants. The present paper proposes a design of a power management circuit that can harness, store and manage the electrical energy which is harvested from the leaves of Aloe Barbadensis Miller (Aloe Vera) plants to trigger a transmitter load to power a remote sensor. The power management circuit consists of two sections namely; an energy storage system that acts as an energy storage reservoir to store the energy harvested from the plants as well as a voltage regulation system which is used to boost and manage the energy in accordance to a load operation. The experimental results show that the electrical energy harvested from the Aloe Vera under a specific setup condition can produce an output of 3.49 V and 1.1 mA. The harvested energy is being channeled to the power management circuit which can boost the voltage to 10.9 V under no load condition. The harvested energy from the plants boosted by the power management circuit can turn ON the transmitter automatically to activate a temperature and humidity sensor to measure the environmental stimuli periodically with a ton of 1.22 seconds and toff of 0.46 seconds. This proves that this new source of energy combined with a power management circuit can be employed for powering the wireless sensor network for application in the Internet of Things (IoT).


Assuntos
Aloe/metabolismo , Fontes de Energia Bioelétrica , Folhas de Planta/metabolismo , Tecnologia sem Fio/instrumentação , Eletricidade , Desenho de Equipamento
3.
PLoS One ; 14(6): e0218758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31237903

RESUMO

Electrical energy can be harvested from the living plants as a new potential renewable energy source. Characterization of the electrical signal is needed to enable an optimum energy harvesting setup condition. In the present paper, an investigation is conducted to analyze the characteristic of Aloe Barbadensis Miller (Aloe Vera) leaves in terms of electrical energy generation under specific experimental setups. The experimental results show that 1111.55uW electrical power can be harvested from the Aloe Vera with 24 pairs of electrodes and this energy is capable to be stored in a capacitor. This energy has a high potential to be used to power up a low power consumption device.


Assuntos
Aloe/metabolismo , Fontes de Energia Bioelétrica , Capacitância Elétrica , Eletrodos , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...